設(shè)等差數(shù)列{an}的公差d不等于0。 (1)求證:對任意自然數(shù)k,拋物線y=akx^2+2a(k+1)x+a(k+2)過x軸上的一個(gè)定點(diǎn)。(2)若各條拋物線y=akx^2+2a(k+1)x+a(k+2)與另一個(gè)不同的交點(diǎn)為(bk,0),求證{1/(1+bk)}也是等差數(shù)列。注:k是a的下標(biāo),表示項(xiàng)數(shù),不代表相乘。

熱心網(wǎng)友

(1):因?yàn)閍k為等差數(shù)列,所以ak+a(k+2)=2a(k+1) 所以y=akx^2+2a(k+1)x+a(k+2) =akx^2+akx+a(k+2)x+a(k+2) =akx(x+1)+a(k+2)(x+1) =(x+1)[akx+a(k+2)] 所以當(dāng)x=-1時(shí)必有y=0 所以拋物線y=akx^2+2a(k+1)x+a(k+2)必過x軸上一個(gè)定點(diǎn)即x=-1點(diǎn)(2):根據(jù)(1)可知拋物線y=akx^2+2a(k+1)x+a(k+2)另一交點(diǎn)為bk=-a(k+2)/ak 設(shè){1/(1+bk)}=ck 則ck=1/[1-a(k+2)/ak]=ak/[ak-a(k+2)] 因?yàn)閍k為等差數(shù)列且公差d不等于0,所以 ak-a(k+2)=-2d 所以ck=ak/(-2d)=-ak/2d 所以c(k+1)=-a(k+1)/2d 所以c(k+1)-ck=-a(k+1)/2d-(-ak/2d) =[-a(k+1)+ak]/2d =-d/2d =-1/2 根據(jù)等差數(shù)列的定義ck即1/(1+bk)}也是等差數(shù)列。