1。數列(An)中,Sn=a1+a2+a3+.....+an,若數列(Sn)為正值等比數列,試比較1/2(An+An+2)與An+1的大小。2。數列(An)是首項為a的等比數列,(An)的連續三項(項數從小到大)分別是等差數列的第s,t,r項(s,t,r為互不相等的常數),求(An)的通項公式。
熱心網友
1。 設{Sn}的公比為qAn = Sn - Sn-1 = q*Sn-1 - Sn-1 = (q-1)*Sn-1An+1 = Sn+1 - Sn = q^2*Sn-1 - q*Sn-1 = (q-1)*q*Sn-1An+2 = Sn+2 - Sn+1 = q^3*Sn-1 - q^2*Sn-1 = (q-1)*q^2*Sn-1[1/2(An+An+2)] - An+1 = (q-1)*Sn-1*[(1+q^2)/2 - q] = (q-1)*Sn-1*[(1-q)^2/2 ] = 0因此: 1/2(An+An+2) 大于等于 An+1。2。設等差數列首項為b, 公差為d數列(An)的公比為q, 連續三項為第k、k+1、k+2項則:Ak = a*q^(k-1) = b+(s-1)d 。。。(1)Ak+1 = a*q^k = b+(t-1)d 。。。。。。(2)Ak+2 = a*q^(k+1) = b+(r-1)d 。。。(3)(2)-(1)得: a*q^(k-1)*(q-1) = (t-s)*d 。。。(4)(3)-(2)得: a*q^k*(q-1) = (r-t)*d 。。。。(5)(5)-q*(4)得: (r-t)*d = (t-s)*d*qq = (r-t)/(t-s) 因此: An = a * q^(n-1) = a * [(r-t)/(t-s)]^(n-1)。
熱心網友
1/2(An+An+2)=1/2(Sn-Sn-1+Sn+2-Sn+1)=1/2(q-1+q^3-q^2)Sn-1= 1/2(q-1)(q^2+1)Sn-1An+1=Sn+1-Sn=(q^2-q)Sn-1=q(q-1)Sn-11q0 1/2(An+An+2)1 1/2(An+An+2)An+1 q=1相等