tanAtanB=1/根號(hào)3,求(2-cos2A)(2-cos2B)

熱心網(wǎng)友

算出來了,占個(gè)位,要打字。解:根據(jù)萬能公式cos2α=[1-(tgα平方)]/[1+(tgα平方) ] (2-cos2A)×(2-cos2B)={2-[1-(tgA平方)]/[1+(tgA平方) ]}×{2-[1-(tgB平方)]/[1+(tgB平方) ]} 考慮tgA符號(hào)的難寫,可以令tgA=m,tgB=n 另外,用^2表示平方上式就可以化為:={2-[(1-m^2)/(1+m^2)]}×{2-[(1-n^2)/(1+n^2)]}=[(3m^2+1)/(1+m^2)]×[(3n^2+1)/(1+n^2)]=(3m^2+1)(3n^2+1)/[(1+m^2)(1+n^2)]=(9m^2×n^2+3m^2+3n^2+1)/(m^2×n^2+m^2+n^2+1)∵tanAtanB=1/根號(hào)3 ∴mn=1/根號(hào)3 ∴(mn)平方=1/3上式的(9m^2×n^2+3m^2+3n^2+1)/(m^2×n^2+m^2+n^2+1)=(3+3m^2+3n^2+1)/(1/3+m^2+n^2+1)=(4+3m^2+3n^2)/(4/3+m^2+n^2)=(4+3m^2+3n^2)/[(1/3)*(4+3m^2+3n^2)]=3∴(2-cos2A)×(2-cos2B)=3。