設數列{an}的各項為正,Sn是其前n項和若a(n+1)=tSn(n∈Nt為大于0的常數),求證:a2,a3,```,an,成等比數列
熱心網友
因為a(n+1)=tSn,即Sn=a(n+1)/t,所以S(n+1)=a(n+2)/t,又因為S(n+1)-S(n)=a(n+1),所以a(n+2)/t-a(n+1)/t=a(n+1),所以a(n+2)=(t+1)a(n+1),即a(n+2)/a(n+1)=t+1=常數,而a(n+1)=tS(n),所以當n=1時,a(2)=ta(1),即a(2)/a(1)≠t,所以a(1)不在公比為t+1的數列中,所以a2,a3,a4.......an成等比數列