已知函數(shù)f(x)在(-∞,0)(0,+∞)上是奇函數(shù),且在(0,+∞)上是增函數(shù),f(1)=0,又g(a)=(sina)^2+mcosa-2m,a∈(0,π/2),設(shè)M={m|g(a)<0,m∈R},N={m|f[g(a)]<0},則M∩N=?答案(4-2√2,+∞)
熱心網(wǎng)友
f(x)為增函數(shù),f(1)=0 == f[g(a) 0 m(1+(sina)^2)/(2-cosa)(1+(sina)^2)/(2-cosa)=(2-(cosa)^2)/(2-cosa)=2+cosa-2/(2-cosa)令t=2-cosa,則上式化為4-(t+2/t),因?yàn)閠+2/t=2√2,所以上式=4-2√2所以m的范圍為(4-2√2,+∞)
熱心網(wǎng)友
我高一,不懂