老師,請(qǐng)問(wèn)F(X) G(X),F(X)*G(X),F[g(x)],這些函數(shù)的單調(diào)性和奇偶性如何判斷???謝謝!

熱心網(wǎng)友

一,判斷奇偶性判斷f(x)+g(x)1,f(x),g(x)同為奇函數(shù)時(shí),則f(x)+g(x)為奇函數(shù)2,f(x),g(x)同為偶函數(shù)時(shí),則f(x)+g(x)為偶函數(shù)3,其他情況下無(wú)必然聯(lián)系判斷f(x)*g(x)1, 奇×奇=偶 f(-x)g(-x)=[-f(x)][-g(x)]=f(x)g(x),所以是偶2,奇×偶=奇 f(-x)g(-x)=[-f(x)][g(x)]=-f(x)g(x),所以是奇3,偶×偶=偶 f(-x)g(-x)=f(x)g(x),所以是偶判斷f[g(x)]1,f(x)奇,g(x)偶時(shí): f[g(-x)]=f[g(x)],因此f[g(x)]為偶。所以奇[偶]=偶2,f(x)偶,g(x)奇時(shí): f[g(-x)]=f[-g(x)]=f[g(x)],因此f[g(x)]為偶。所以偶[奇]=偶3,f(x)偶,g(x)偶時(shí): f[g(-x)]=f[g(x)],因此f[g(x)]為偶。所以偶[偶]=偶4,f(x)奇,g(x)奇時(shí); f[g(-x)]=f[-g(x)]=-f[g(x)],因此f[g(x)]為奇。所以奇[奇]=奇二、判斷單調(diào)性1。f(x),g(x)同增,f(x)+g(x)增 f(x),g(x)同減,f(x)+g(x)減2,f(x)g(x)同增,f(x)g(x)增 f(x)g(x)同減,f(x)g(x)減3,f(g(x)), g(x)增,f(x)增,f(g(x))增 g(x)減,f(x)減,f(g(x))增 g(x)減,f(x)增,f(g(x))減 g(x)增, f(x)減,f(g(x))減。

熱心網(wǎng)友

向雷鋒同志學(xué)習(xí)!