已知公差大于0的等差數(shù)列{an}的前項(xiàng)和為Sn且a3*a4=117,a2+a5=22.1.求通項(xiàng)an.2.若數(shù)列{bn}是等差數(shù)列,且bn=Sn/(n+c),求非0常數(shù)c.3.在(2)條件下,求證:bn/(n+36)b(n+1)小于等于1/49.注:b(n+1)中(n+1)為下標(biāo)

熱心網(wǎng)友

(1)方法如樓上,但an=4n-3(2)Sn=n(2n-1),要使bn=Sn/(n+c)是等差數(shù)列,非0常數(shù)c為-(1/2),bn=2n(3)bn/(n+36)b(n+1)=n/((n+36)(n+1))=n/(n^2+37n+36)n^2+36=12n所以(n^2+37n+36)=49nbn/(n+36)b(n+1)小于等于1/49.

熱心網(wǎng)友

(1):a2+a5=a3+a4=22 a3*a4=117 聯(lián)立求解得a3=9或13,又由于公差大于0,則a3=9,a4=13,所以d=4,a1=1,所以an=4n+1