設0≤a< 1時,函數f(x)=(a-1)x^2-6ax+a+1恒為正。求f(x)的定義域
熱心網友
0=-1=f(x)=(a-1)x^2-6ax+(a+1)的圖像開口向下。要使f(x)0恒成立,必定有它的解集在f(x)=0的兩根之間f(x)=0---x=[3a+'-√(8a^2+1)]/(a-1)a-1[3a-√(8a^2+1)]/(a-1)[3a+√(8a^2+1)]/(a-1)---[3a+√(8a^2+1)]/(a-1)
設0≤a< 1時,函數f(x)=(a-1)x^2-6ax+a+1恒為正。求f(x)的定義域
0=-1=f(x)=(a-1)x^2-6ax+(a+1)的圖像開口向下。要使f(x)0恒成立,必定有它的解集在f(x)=0的兩根之間f(x)=0---x=[3a+'-√(8a^2+1)]/(a-1)a-1[3a-√(8a^2+1)]/(a-1)[3a+√(8a^2+1)]/(a-1)---[3a+√(8a^2+1)]/(a-1)