直線x-ky+1-k=0(k大于等于0.5小于等于2)與坐標軸交于兩點A,B,O是原點,C是AB的中點,求OC距離的取值范圍.

熱心網友

x-ky+1-k=0---x-ky=k-1---x/(k-1)+y/[(k-1)/(-k)]=1---A(k-1); B(0,(k-1)/(-k))C是線段AB的中點,所以C((k-1)/2,(k-1)/(-2k))---|OC|^2=(k-1)^2/4+(k-1)^2/(4k^2)=(k-1)^2*(k^2+1)/(4k^2)=1/4*(k^4-2k^3+2k^2-2k+1)/k^2=1/4*(k^2-2k+2-2/k+1/k^2)=1/4*[(k^2+2+1/k^2)-2(k+1/k)]1/4*[(k+1/k)^2-2(k+1/k)+1-1]=1/4*(k+1/k-1)^2-1/4當k0時k+1/k=2---k+1/k-1=1。---(k+1/k-1)^2=1。因此,函數(k+1/k-1)^2時有最小值1,在01時是增函數,并且1/2=1=<(k+1/k-1)^2=<(3/2)^2所以0=<1/4*(k+1/k-1)^2-1/4=<2。因此|OC|的范圍是 [0,√2]。