化簡sin3A*sinA的3次+cos3A*cosA的3次謝!
熱心網(wǎng)友
我?guī)湍阕崛瞬恢肋@樣行不行?sin3A*sinA的3次+cos3A*cosA的3次=sin3A*(sinA)^3+cos3A*(cosA)^3=sin3A*(3sinA-sin3A)/4 +cos3A*(3cosA+cos3A)/4=(1/4)*(3sinA*sin3A-sin3A*sin3A+3cosA*cos3A+cos3A*cos3A)=(1/4)*[(3sinA*sin3A+3cosA*cos3A)+(cos3A*cos3A-sin3A*sin3A)]=(1/4)*(3cos2A+cos6A) 這一行更容易看懂=3(cos2A)/4+(cos6A)/4 sin3A=3sinA-4*(sinA)^3 → (sinA)^3=(3sinA-sin3A)/4cos3A=4*(cosA)^3-3cosA → (cosA)^3=(3cosA+cos3A)/4。