一個鈍角三角形至少需要幾個銳角三角形組成?即:一個鈍角三角形如何劃分成有限個銳角三角形,使這些銳角三角形個數最少?給出具體劃分方法。

熱心網友

劃成7個銳角三角形;方法:以鈍角為一內角,以對邊中一段為一邊,作一凸五邊形;取五邊形內一點,連五個頂點,成五個銳角三角形,加余下的兩個,一共是7個. 畢.注:分兩步走:1)劃成一個凸五邊形和兩個銳角三角形;2)把五邊形劃成五個銳角三角形;

熱心網友

由鈍角的平分線把三角形分為兩個銳角三角形,故至少為兩個.

熱心網友

沒有辦法分的,因為分出一個銳角三角形后剩下的三角形就是鈍角三角形。因為被分的銳角三角形的一個外角等于和它不相鄰的兩內角之和,一定大于90度,就是一個新的鈍角。

熱心網友

剛才我沒有仔細考慮,看了姑蘇寒士的回答恍然大悟,真的是可以劃分的。我按他的回答制作一張圖片,大家看起來方便。

熱心網友

2個,同上

熱心網友

兩個

熱心網友

解: 由鈍角的定義知道,設γ是鈍角,則90°<γ<180°,那么γ/2<90°,也就是說二等份這個鈍角就可以啦。劃分方法:以鈍角的頂點為圓心,以兩條臨邊的較短邊為半徑畫弧,并與兩條臨邊相交,連接這兩個交點做直線,過該鈍角的頂點做這條直線的垂線,并與對邊相交,這條垂線就是這個鈍角的角平分線。以這條垂線為公用邊的兩個三角形必是銳角三角形。

熱心網友

兩個,過鈍角的頂點向對邊作垂線,得到的就是兩個銳角三角形