拋物線y^2=4x,點P(1,2),A(X1,Y1),B(X2,Y2)均在拋物線上,當PA,PB的斜率存在并且傾斜角互補時,求Y1+Y2的值及直線AB的斜率。

熱心網友

PA,PB的斜率存在并且傾斜角互補(Y1-2)/(X1-1) = - (Y2-2)/(X2-1)x=y^2/4代入其中。(Y1-2)/(Y1^2-4) = - (Y2-2)/(Y2^2-4)1/(Y1+2) = -1/(Y2+2)(Y1+Y2+4)/(Y1+2)(Y2+2) = 0Y1+Y2 = -4(Y2-Y1)/(X2-X1)=4*(Y2-Y1)/(Y2^2-Y1^2)=4/(Y1+Y2)=-1結論 Y1+Y2=-4AB直線斜率為 -1