如圖,兩皮帶圓O1的半徑為8,圓O2的半徑為2,圓心距為12,求皮帶長。

熱心網友

設圓O1的圓心為M、圓O2的圓心為N;連接MN,其延長線交圓O1于G;交圓O2于H過N作NE∥BA,交AM于E由條件可知 ME=8-2=6;MN=12;NE⊥ME. 所以 ∠EMN=60°;EN=6√3即 ∠AMG=120°;∠BNH=60°;AB=6√3所以,弧AG=(2×8×π)/3=16π/3 ;弧BH=(2×2×π)/6=2π/3 皮帶長=[(弧AG)+AB+(弧BH)]×2 = [(16π/3)+(6√3)+(2π/3 )]×2 =12π + 12√3

熱心網友

樓上的很對