已知數(shù)列1024,1024+lg(2^-1),1024+lg(2^-2),…..,1024+lg(2^(1-n)),…..(1),n為何值時(shí),前n項(xiàng)和的絕對(duì)值最大?(2)n為何值時(shí),前n項(xiàng)和的絕對(duì)值最小?

熱心網(wǎng)友

an=1024+lg(2^(1-n))=1024-(n-1)lg2是首項(xiàng)為1024,公差是-lg2的等差數(shù)列前n項(xiàng)和Sn=1024n-n(n-1)lg2/2=-lg2/2n[n-(2048/lg2)]令an=0,n=1024/lg2+1≈3402.7令Sn=0,n=2048/lg2≈6803.3∴當(dāng)n≤3402時(shí),前n項(xiàng)和的絕對(duì)值遞增,n=3402時(shí)達(dá)到極大值;當(dāng)3402<n≤6803時(shí),前n項(xiàng)和的絕對(duì)值遞減,n=3803時(shí)最小;當(dāng)n>6803時(shí),前n項(xiàng)和的絕對(duì)值遞增,至無(wú)窮大。

熱心網(wǎng)友

解:(1)由題意可歸納出其數(shù)列的通項(xiàng)公式an=1024+lg(2^(1-n)an<01024+lg(2^(1-n))<0         n>1024/lg2+1         所以在n<1024/lg2都是正數(shù)所以n=1024/lg2的整數(shù)部分+1=3402時(shí)最大(2)上面得n>=3042時(shí)為負(fù)數(shù)絕對(duì)值最小為0,所以當(dāng)n=6082最小