求函數Y=COS^X+SINX在閉區間[-%/4,%/4]上的最值.%指派.
熱心網友
y=(cosx)^2+sinx在閉區間[-π/4,π/4]上的最值解:y=(cosx)^2+sinx=1-(sinx)^2+sinx=(5/4)-[sinx-(1/2)]^2x=-π/4,既sinx=-√2/2時,ymin=(5/4)-[-(√2/2)-(1/2)]^2=(1-√2)/2x=π/6,既sinx=1/2時,ymax=5/4
熱心網友
Y=-sin^X+sinX+1,因為X在[-%/4,%/4]上,所以sinX取值范圍為[-(根號2)/2,(根號2)/2],Y在-1 求函數Y=COS^X+SINX在閉區間[-%/4,%/4]上的最值.%指派. 解:Y=根號2[(根號2/2)COSX+(根號2/2)SINX] =根號2[SIN(X+%/4)]-%/4<=X<=%/40<=SIN(X+%/4)<=10<=Y<=根號2所以最值為0,根號2. 求函數Y=COS^X+SINX在閉區間[-%/4,%/4]上的最值.%指派.此題解法:y=cosx+sinx=(根號2)*sin(x+%/4)對于y=sinx來說,在閉區間[-%/4,%/4]上是增函數,分別在-%/4和%/4處取得最小值和最大值。所以,y=cosx+sinx的最大值為1/2,最小值為-1/2。 y=cosx+sinx =$2sin(x+%/4)因為 x[-%/4,%/4]therefore x+%/4 [0,%]therefore y (0,$2)最值為 0 $2$為根號熱心網友
熱心網友
熱心網友