三角形ABC,2SINA的平方=3SINB的平方加3SINC的平方,COS2A加3COSA加3COS(B-C)=1,求A:B:C和角A

熱心網友

已知:2sinA^2=3sinB^2+3sinC^2;cos2A+3cosA+3cos(B-C)=1求A:B:C和角A∵cos2A+3cosA+3cos(B-C)=1∴1-2sinA^2+3[-cos(B+c)+cos(B-C)]=1∴2sinA^2=6sinB*sinC 即2a^2=6bc …………①∵2sinA^2=3sinB^2+3sinC^2  即2a^2=3b^2+3c^2…………②聯立①②解得:a=(√3)c,b=c ∴cosA=(b^2+c^2-a^2)/2bc=(c^2+c^2-3c^2)/2c^2=-1/2∴A=120° 此時B=C=30°∴A:B:C=120°:30°:30°=4:1:1且角A=120°

熱心網友

OK