ab≠0證明:a+b=1的充要條件是a^3 + b^3 + ab + a^2 + b^2=0

熱心網友

代入a=0.5,b=0.5,題目顯然錯誤,期待正確的題目!

熱心網友

題目錯了吧:a^3 + b^3 + ab - a^2 - b^2 = 0若:a+b=1 ==》(a+b)^3 = a^3+b^3+3ab(a+b) = a^3+b^3+3ab = 1 ...(1)(a+b)^2 = a^2+2ab+b^2 = 1 ...(2)(1)-(2): a^3 + b^3 + ab - a^2 - b^2 = 0若:a^3 + b^3 + ab - a^2 - b^2 = 0== a^3 + b^3 + ab - a^2 - b^2 = (a+b)(a^2-ab+b^2)-(a^2-ab+b^2)= (a+b-1)(a^2-ab+b^2)ab≠0 === a^2-ab+b^2 ≠0== a+b-1 = 0 === a+b = 1證畢。