求過點A(1,2)且與圓X^2+(y+2)^2=36內切的動圓圓心的軌跡方程.
熱心網友
求過點A(1,2)且與圓X^2+(y+2)^2=36內切的動圓圓心的軌跡方程因為圓的圓心為P(0,-2) ,所求圓心為Q(x,y) 因為PQ = R - r所以 √[x^2+(y+2)^2] = 6 - √[(x-1)^2 +(y-2)^2]化簡即可
求過點A(1,2)且與圓X^2+(y+2)^2=36內切的動圓圓心的軌跡方程.
求過點A(1,2)且與圓X^2+(y+2)^2=36內切的動圓圓心的軌跡方程因為圓的圓心為P(0,-2) ,所求圓心為Q(x,y) 因為PQ = R - r所以 √[x^2+(y+2)^2] = 6 - √[(x-1)^2 +(y-2)^2]化簡即可