已知f(x)是二次函數,且f(x+1)+f(x-1)=2x^2-4x+4,則f(x)=謝謝寫出過程
熱心網友
設f(x)=ax^2+bx+cf(x+1)+f(x-1)=a(x+1)^2+b(x+1)+c+a(x-1)^2+b(x-1)+c=)=2x^2-4x+42ax^2+2bx+2(a+c)=2x^2-4x+4解得a=1,b=-2,c=1則 f(x)=x^2-2x+1
熱心網友
f(x+1)+f(x-1)=2x^2-2x+4---[a(x+1)^2+b(x+1)+c]+a(x-1)^2+b(x-1)+c]=2x^2-4x+4---2ax^2+2bx+2(a+c)=2x^2-4x+4---2a=2; 2b=-4; 2(a+c)=4---a=1; b=-2; c=1---f(x)=x^2-2x+1
熱心網友
設f(x)=ax^2+bx+cf(x+1)+f(x-1)=a(x+1)^2+b(x+1)+c+a(x-1)^2+b(x-1)+c=)=2x^2-4x+42ax^2+2bx+2(a+c)=2x^2-4x+4解得a=1,b=-2,c=1則 f(x)=x^2-2x+1