在三角形ABC中,求證:(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
熱心網友
在三角形ABC中,求證:(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 左=2 - 1/2*[cos(2A)+cos(2B)- (cosC)^2 =2 - cos(A+B)*cos(A-B) -(cosC)^2 =2 + cosC*[cos(A-B)- cosC] =2 + cosC*[cos(A-B)+cos(A+B)] =2 + 2cosAcosBcosC =右