求函數f(x)=x-cosx(sinx+cosx),x∈[-π/4,3π/4]的最大值和最小值

熱心網友

求f(x)=x-cosx(sinx+cosx),x∈[-π/4,3π/4]的最大值和最小值 令導數f'(x)=1-cosx(cosx-sinx)+sinx(sinx+cosx)=1-cos^x+sin^x+2sinxcosx=2sin^x+2sinxcosx=2sinx(sinx+cosx)=2√2sinxsin(x+π/4)=√2cos(π/4)-√2cos(2x+π/4)=1-√2cos(2x+π/4)=0cos(2x+π/4)=√2/2∵x∈[-π/4,3π/4],∴2x+π/4∈[-π/4,7π/4],∴2x+π/4=-π/4、π/4、7π/4,∴函數f(x)的極值點為x=-π/4、0、3π/4二階導數f''(x)=-2√2sin(2x+π/4)∵f''(-π/4)=f''(3π/4)=20,f''(0)=-2<0∴f(x)在x=-π/4或3π/4時有最小值min[f(-π/4),f(3π/4)]=f(-π/4)=-π/4f(x)在x=-0時有最大值f(0)=-1。

熱心網友

f(x)=x-cosx(sinx+cosx) = x - (根號2)*[cos(2x-π/4)]/2 - 1/2做函數 y1 = x -1/2 及 y2 = (根號2)*[cos(2x-π/4)]/2 的圖象。在區間 x∈[-π/4,3π/4] 內,可得 y1-y2 的極值為:函數最大值 = 5π/8 -1/2 +(根號2)/2,(x = 5π/8 時)函數最小值 = π/8 -1/2 -(根號2)/2,(x = π/8 時)