已知單位圓和直線y=2x+m相交于A、B兩點,且OA、OB與x軸正方向所成的角為α和β(O為原點) 求證:sin(α+β)為定值
熱心網友
如圖:過O作OC⊥AB于C點,則OC平分∠AOB因為∠AOD=α ,∠BOD=β ,所以∠COD=(α+β)/2又因OC⊥AB ,AB的斜率為:k1=2 ,所以OC的斜率為:k2=-1/2所以 tan(α+β)/2 =-1/2由萬能公式得:sin(α+β)= 2*(-1/2)/[1+(-1/2)^2] =-4/5
熱心網友
解y=2x+m x^2+y^2=1得x1=[-2m-(6-2m)^0.5]/6 x2=[-2m+(6-2m)^0.5]/6 y1=[m-(6-2m)^0.5]/3 y2==[m+(6-2m)^0.5]/3 A{[-2m-(6-2m)^0.5]/6,[m-(6-2m)^0.5]/3 } B{[-2m+(6-2m)^0.5]/6,[m+(6-2m)^0.5]/3 }sin(α+β)=sinαcosβ+cosαsinβ =[m+(6-2m)^0.5]/3*[-2m-(6-2m)^0.5]/6+[-2m+(6-2m)^0.5]/6*[m-(6-2m)^0.5]/3 =(-4m^2+4m-12)/18