sin2A/sin2B+cos2A*cos2C=1 求證:tan2A*cot2B=sin2C其中“2”均為“平方”,謝謝!(詳細過程)

熱心網友

(sinA/sinB)^2+(cosA*cosC)^2=1 求證:(tanA*cotB)^2=(sinC)^2因為(sinA/sinB)^2+(cosA*cosC)^2=1所以(sinA/sinB)^2+(cosA*cosC)^2=(sinA)^2 +(cosA)^2兩邊同除以(cosA)^2得:(tanA*cscB)^2 +(cosC)^2 =(tanA)^2 + 1所以 (tanA*cscB)^2 -(tanA)^2 = 1- (cosC)2即 :(tanA*cotB)^2=(sinC)^2