求證:對于任意正整數n,總有無限個正整數K,使得n^+kn+1為完全平方數且若k>2 則k>√n

熱心網友

1.對于任意正整數n,取k=2+s[(s+2)n+2],s=0,1,2,3,...,==n^2+kn+1=n^2+[2+s[s+2]n+2]]]n+1=[n+1+ns]^2.2.設n^2+kn+1=(n+a)^2,k2==a1==(k-2a)n=a^2-10==k2a==a^2-1≥n==a√n==k2√n.

熱心網友

不會!

熱心網友

求證:對于任意正整數n,總有無限個正整數K,使得n^+kn+1為完全平方數   且若k2 則k√n 令k=(m^2+2m)*n +2(m+1) ,m為自然數。則    n^2+kn+1=(m+1)^2*n^2 +2(m+1)n +1 = [(m+1)n +1]^2所以總有無數個正整數k ,使得n^2+kn+1為完全平方數因為k=(m^2+2m)*n +2(m+1)=[(m^2+2m)*n +2(m+1)-√n] +√n ={√[(m^2+2m)*√n]^2 - 1/[2√(m^2+2m)]}^2 +[2m+2 - 1/(4m^2+8m)] +√n >√n所以 k=(m^2+2m)*n +2m+2 >2 且k>√n