熱心網友

2x^2+y^2=6x---y^2=6x-2x^2y^2=0---6x-2x^2=0---0=

熱心網友

2x^2+ y^2=6x==(x-3/2)^2/(9/4)+y^2/(9/2)=1==-1≤(x-3/2)/(3/2)≤1==0≤x≤3==x^2+ y^2+2x=x^2+ (6x-x^2)+2x=8x-x^2==-(x-4)^2+16==-(x-4)^2+16在[0,3]單調,==》x^2+ y^2+2x最大值為8*3-3^2=15,x^2+ y^2+2x最小值為8*0-0^2=0。

熱心網友

已知2x*x+ y*y=6x,求x*x+ y*y +2x的最值.因為2x*x+y*y=6x所以y*y+2x=8x-2x*x 所以x*x+y*y+2x=8x-x*x=-(x-4)*(x-4)+16最大值為16