已知拋物線y=x^2的動弦長為2,求動弦中點縱坐標最小值?

熱心網友

設動弦所在直線為:y=kx+b代入y=x^2,得,x^2 -kx-b=0交點P(x1,kx1+b),Q(x2,kx2+b)|PQ|^2 = 4 = (x1-x2)^2 +(y1-y2)^2 = (1+k^2)(x1-x2)^2=(1+k^2)[(x1+x2)^2 -4x1x2] = (1+k^2)(k^2 +4b)== b = -k^2/4 + 1/(1+k^2)動弦中點縱坐標 = (y1+y2)/2 = [k*(x1+x2)+2b]/2 = k^2/4 + 1/(1+k^2)= (1+k^2)/4 +1/(1+k^2) -1/4 = 1 -1/4 = 3/4因此,最小值為3/4。