已知曲線y=ax2與y=lnx相切,求(1)常數(shù)a;(2)切點(diǎn)處的切線方程;(3)該切線與兩坐標(biāo)軸所謂圖形的面積
熱心網(wǎng)友
設(shè):切點(diǎn)P(m,n)曲線y=ax2在P點(diǎn)斜率為:2am,并且:n = a*m^2 .....(1)曲線y=lnx在P點(diǎn)斜率為:1/m,并且:n = ln(m) .....(2)曲線y=ax2與y=lnx在P點(diǎn)相切:2am = 1/m .....(3)解(1)(2)(3),得: m = genhao(e);n = 1/2; a = 1/(2*e)切點(diǎn)處的切線方程為: y - n = (1/m)*(x - m)即:y = x/[genhao(e)] - 1/2切線與兩坐標(biāo)軸交點(diǎn)為:(0,-1/2),[genhao(e)/2,0]該切線與兩坐標(biāo)軸所謂圖形的面積 = |-1/2|*[genhao(e)/2]/2 = genhao(e)/8