y=(2cosθ+1)/(2cosθ-1)的值域y=(√3)sin2x+cos2x 單調增區間

熱心網友

1。y=1+2/(2cosθ-1),2cosθ-1=2/(y-1),即2cosθ=1+2/(y-1)。(y-1≠0)因為-2≤2cosθ≤2,所以,-2≤1+2/(y-1)≤2,即-3≤2/(y-1)≤1當y-10時,有{y-1≥2,-3(y-1)≤2,解這個不等式組,得y≥3。當y-1<0時,有{y-1≤2,-3(y-1)≥2,解這個不等式組,得y≤1/3。所以,y≥3或y≤1/3。即y=(2cosθ+1)/(2cosθ-1)的值域為[3,+∞)∪(-∞,1/3]。2。y=(√3)sin2x+cos2x =2[sin2xcos(π/6)+cos2xsin(π/6)]=2sin(2x+π/6),因為當-π/2+2nπ≤2x+π/6≤2nπ+π/2時,函數y=2sin(2x+π/6)是單調增加的,由-π/2+2nπ≤2x+π/6≤2nπ+π/2,解得-π/3+nπ≤x≤π/3+nπ當π/2+2nπ≤2x+π/6≤2nπ+3π/2時,函數y=2sin(2x+π/6)是單調減少的由π/2+2nπ≤2x+π/6≤2nπ+3π/2,解得π/6+nπ≤x≤2π/3+nπ所以,y=(√3)sin2x+cos2x的單調區間為[-π/3+nπ,π/3+nπ]∪[π/6+nπ,2π/3+nπ]。

熱心網友

(1)由y=(2cosθ+1)/(2cosθ-1)得cosθ=(y+1)/(2y-2),因為-1≤cosθ≤1,故-1≤(y+1)/(2y-2)≤1,分2y-2<0和2y-2>0兩種情況進行討論,最終解得y≤1/3或y≥3,因為2cosθ-1是分母,所以2cosθ-1≠0,即cosθ≠1/2,即(y+1)/(2y-2)≠1/2,解得y∈R,故函數值域為(-∞,1/3]∪[3,+∞).(2)原函數化為:y=2sin(2x+π/6),畫出函數sinX的圖像,找出其遞增區間為[2kπ-π/2,2kπ+π/2],令2kπ-π/2≤2x+π/6≤2kπ+π/2,解得kπ-π/3≤x≤kπ+π/6,故函數的遞增區間為[kπ-π/3,kπ+π/6](k∈Z).

熱心網友

1.y=(2cost+1)/(2(cost-1)---cost=(y+1)/[2(y-1)]-1=-1=(y+1)/[2(y-1)]=-1and(y+1)/[2(y-1)]=(3y-1)/[2(y-1)]=0and(y-3)/[2{y-1)]=0---y=1;andy=3---y==3.值域是(-,1/3]并[3,+)。2.y=3^.5*sin2x+cos2x=2sin(2x+Pi/6)基本函數y=sinx的單增區間是[2kPi-Pi/2,2kPi+Pi/2]---2kPi-Pi/2=2kPi-2Pi/3=kPi-Pi/3=

熱心網友

(1)-1 1/(2cosθ-1) = 1== y=(2cosθ+1)/(2cosθ-1) = 1 + 2/(2cosθ-1)的值域為:y = 2(2)y=(√3)sin2x+cos2x = 2*sin(2x+30)單調增區間為: 2npi - pi/2 <= 2x+30 <= 2npi + pi/2及2npi + pi/2 <= 2x+30 <= 2npi + 3pi/2即: npi - pi/6 <= x <= npi + 2pi/2及npi + 3pi/2 <= x <= npi + 5pi/2

熱心網友

充分利用三角函數求解