1,已知角α的終邊在射線y=-3x(x≥0)上,求sinacosa+2cos^2a+3sin^2a的值2,設(shè)f(x)=sin(дx/3),求f(1)+f(2)+f(3)+...+f(2005)的值3,已知sina/sinb=p,cosa/cosb=q,且p不等于正負一,q不等于零,求tanatanb的值
熱心網(wǎng)友
1,已知角α的終邊在射線y=-3x(x≥0)上,求sinacosa+2cos^2a+3sin^2a的值解:利用二倍角公式令y=sinacosa+2cos^2a+3sin^2a=(1/2)sin2x+(1+cos2x)+(3/2)(1-cos2x)=(1/2)sin2x+(5/2)-(1/2)cos2x∵α的終邊在射線y=-3x(x≥0)∴tgα=-3 利用半角公式,可知:y=sinacosa+2cos^2a+3sin^2a=4/52,設(shè)f(x)=sin(xπ/3),求f(1)+f(2)+f(3)+。。。+f(2005)的值f(1)+f(2)+f(3)+。。。+f(2005)=sin(π/3)+sin(2π/3)+sin(3π/3)+。。。+sin(2005π/3)=sin60+sin120+sin180+sin240+sin300+sin360+。。。。。。+sin60=(根號3)/23,已知sinA/sinB=p,cosA/cosB=q,且p不等于正負一,q不等于零,求tanatanb的值∵sinA^2+cosA^2=(p*sinB)^2+(qcosB)^2=1∴sinB^2=(1-q^2)/(p^2-q^2),cosB^2=(1-p^2)/(q^2-p^2)∵tgAtgB=(sinA/cosA)*(sinB/cosB)= nB/(cosA*cosB)=(psinB^2)/(qcosB^2)=(p/q)[(1-q^2)/(p^2-q^2)]/[(1-p^2)/(q^2-p^2)]=-(p/q)*(1-q^2)/(1-p^2)=p(1-q^2)/q(p^2-1)還可以化成:(p-pq^2)/(qp^2-q)。