請高手幫忙啊 若α∈(0,π/2),a?b?o,求f(α)=a^2/(cosα)^2+b^2/(sinα)^2的最小值要過程啊

熱心網友

若α∈(0,π/2),a?b?o,求f(α)=a^2/(cosα)^2+b^2/(sinα)^2的最小值f(α)=a^2/(cosα)^2+b^2/(sinα)^2=a^2*[1+(tanα)^2]+b^2*[1+(cotα)^2]=a^2 +b^2 + (a*tanα)^2 + (b*cotα)^2≥a^2+b^2 + 2ab (均值不等式)所以(tanα)^2=b/a 時,f(α)的最小值為:(a+b)^2