已知等比數列{an},a1>0,公比q>-1,且不等于0。bn=a(n+1)+a(n+2),n屬于正整數。{an},{bn}的前n項和分別為An,Bn,試比較An,Bn的大小

熱心網友

解:1)q=1時,An=na1,Bn=2na1,∵a10∴An<Bn2)q≠1時,An=[a1-a(n+1)]/(1-q)∵bn=a(n+1)+a(n+2),b1=a2+a3,∴Bn=[a2-a(n+2)]/(1-q)+[a3-a(n+3)]/(1-q)∴(1-q)(An-Bn)=(a1-a2-a3)-{a(n+1)-a(n+2)-a(n-3)]=(a1-a2-a3)-(a1-a2-a3)q^n=a1(1-q-q^)(1-q^n)∴An-Bn=a1(1-q-q^)[(1-q^n)/(1-q)]下面證明:[(1-q^n)/(1-q)]>0當-1<q<1時:1-q>0且1-q^n>0∴[(1-q^n)/(1-q)]>0當q>1時:1-q<0且1-q^n<0∴[(1-q^n)/(1-q)]>0由于[(1-q^n)/(1-q)]>0且a1>0∴An-Bn=a1(1-q-q^)[(1-q^n)/(1-q)]關鍵是看(1-q-q^)與0的大小令1-q-q^=0,q=(-1+√5)/2或q=(-1-√5)/2q=(-1-√5)/2<-1不符合題意舍去,∴當-1<q<(-1+√5)/2時:An>Bn。當q=(-1+√5)/2時:An=Bn。當q>(-1+√5)/2時:An<Bn。綜合1),2)可得:當-1<q<(-1+√5)/2時:An>Bn,當q=(-1+√5)/2時:An=Bn,當q>(-1+√5)/2時:An<Bn。