已知:xy≠0且x≠y比較M=x^4-y^4與N=4x^3(x-y)的大小
熱心網(wǎng)友
M-N=X^4-Y^4-4X^3(X-Y)=(X-Y)(-3X^3+X^2Y+XY^2+Y^3)=(X-Y)[(-2X^3+X^2Y+XY^2)-X^3+Y^3]=(X-Y)[-X(2X^2-XY-Y^2)-(X-Y)(X^2+XY+Y^2)]=-(X-Y)^2(3X^2+2XY+Y^2)=-(X-Y)^2[(X+Y)^2+2X^2]因XY≠0,∴X≠0,Y≠0,又X≠Y∴(X-Y)^20,[(X+Y)^2+2X^2]0∴-(X-Y)^2[(X+Y)^2+2X^2]<0即: M N=4X^4-4YX^3M=X^4-Y^4所以N大于M M大 M-N=(x^2+y^2)(x+y)(x-y)-4x^3(x-y)=(x-y)(x^3+y^3+yx^2+xy^2-4x^3)=-(x-y)(3x^3-y^3-xy^2-yx^2)=-(x-y)(2x^3-2yx^2+x^3-y^3+yx^2-xy^2)=-(x-y)[2x^2(x-y)+(x-y)(x^2+xy+y^2)+xy(x-y)]=-(x-y)(x-y)(2x^2+x^2+xy+y^2+xy)=-(x-y)^2[2x^2+(x+y)^2]=-(x-y)^2[2x^2+(x+y)^2]由于x≠y,所以 x-y≠0而 假設(shè)原式要等于0,只有 2x^2+(x+y)^2=0此時(shí) -y = x = 0 , 即 x=y=0與x≠y不合。。。所以 2x^2 + (x+y)^2 ≠ 0 且大于0所以 M-N < 0即 M < N(說(shuō)明一下。。。由于前次回答,是我看見(jiàn)有一樣的題目,而且是被采納了的。。所以直接復(fù)制了一下,sorry,所以沒(méi)好好看題。。。現(xiàn)在修改過(guò)了。。。一定正確)。熱心網(wǎng)友
熱心網(wǎng)友
熱心網(wǎng)友