已知X+Y=3-cos4a,X-Y=4sin2a,求證X^1/2+Y^1/2=2
熱心網友
已知x+y=3-cos4a,x-y=4sin2a,求證x^1/2+y^1/2=2證明:x+y=3-cos4a,x-y=4sin2a兩式相加、減,分別得2x=3-cos4a+4sin2a2y=3-cos4a-4sin2a而2x=3-cos4a+4sin2a =3-[1-2(sin2a)^2]+4sin2a =2(sin2a)^2+4sin2a+2 =(2sin2a+2)(sin2a+1)x=(sin2a+1)^2√x=(sin2a+1)2y=3-cos4a-4sin2a =(2sin2a-2)(sin2a-1)y=(sin2a-1)^2√y=1-sin2a所以√x+√y=sin2a+1+1-sin2a=2
熱心網友
不想后面兩位大哥比較聰明也,小弟也是這么想的,在這就不用寫拉。
熱心網友
x+y=3-cos4a=3-(1-2sin^22a)=2(1+sin^22a)...(1),x-y=4sin2a....(2)(1)+(2),x=1+sin^22a+2sin2a=(1+sin2a)^2,(1)-(2),y=1+sin^22a-2sin2a=1-sin2a)^2,x^1/2+y^1/2=1+sin2a+1-sin2a=2
熱心網友
x+y=3-cos4a=3-(1-2sin^22a)=2(1+sin^22a)...(1),x-y=4sin2a....(2)(1)+(2),x=1+sin^22a+2sin2a=(1+sin2a)^2,(1)-(2),y=1+sin^22a-2sin2a=1-sin2a)^2,x^1/2+y^1/2=1+sin2a+1-sin2a=2
熱心網友
X + Y = 3-cos4a = 3-[1-2*(sin2a)^2] = 2 + 2*(sin2a)^2X - Y = 4*sin2a== X = 1 + (sin2a)^2 + 2*sin2a = (1 + sin2a)^2, Y = 1 + (sin2a)^2 - 2*sin2a = (1 - sin2a)^2因此:X^1/2 + Y^1/2 = [(1 + sin2a)^2]^1/2 + [(1 - sin2a)^2]^1/2= (1 + sin2a) + (1 - sin2a)= 2