設f(x)=sin(x+α )+cos(x-α )是偶函數,且x≠kπ,k∈z,求 f(2α-2π/3)的值
熱心網友
說明:x和α不好區分,干脆用θ代替α∵f(x)=sin(x+θ)+cos(x-θ)是偶函數∴f(x)=-f(x)且f(-x)=sin(θ-x)+cos(-x-θ)= sin(θ-x)+cos(x+θ)有2f(x)=f(x)+f(-x) = sin(x+θ)+cos(x-θ)+ sin(θ-x)+cos(x+θ) =2sinθcosx+2cosθcosx [和差化積公式]∴f(x)=sinθcosx+ cosθcosx=cosx(sinθ+cosθ)∵偶函數=偶函數*偶函數 且f(x)與cosx均為偶函數∴g(θ)=sinθ+cosθ一定為偶函數∴sinθ+cosθ=sin(-θ)+cos(-θ)∴sinθ=-sinθ (∴sinθ=0)∴θ=kπ(k∈Z)此時f(x)=±cosxf(2θ-2π/3)=f(2kπ-2π/3)=±cos(2kπ-2π/3)=±1/2。