已知tanθ+sinθ=a,tanθ-sinθ=b,求證:(a^2-b^2)^2=16ab 請問:如何利用提示(tanθ+sinθ)(tanθ-sinθ)=(tanθ^2)(sinθ^2)求證。請?jiān)敿?xì)解答,謝謝!
熱心網(wǎng)友
因?yàn)閠anx+sinx=a,tanx-sinx=b,所以tanx=(a+b)/2,sinx=(a-b)/2,又因?yàn)?+tanx^2=secx^2=1/cosx^2=1/(1-sinx^2),所以1+(a+b)^2/4=1/[1-(a-b)^2/4],化簡得:16=16+4(a+b)^2-4(a-b)^2-(a^2-b^2)^2,所以16ab=(a^2-b^2)^2
熱心網(wǎng)友
tanθ+sinθ=a,tanθ-sinθ=b,(a^2-b^2)^2=[(a+b)(a-b)]^2=(2tgθ*2sinθ)^2=16(tgθsinθ)^2θ
熱心網(wǎng)友
tanθ+sinθ=a,tanθ-sinθ=b,(tanθ+sinθ)(tanθ-sinθ)=(tanθ^2)(sinθ^2)(a^2-b^2)^2=[(a+b)(a-b)]^2=(2tanθ*2sinθ)^2=16(tanθsinθ)^2 =16ab