曲線y=2-(x^2/2)與y=(x^3/4)-2在交點(diǎn)處的切線夾角是多少?請(qǐng)寫(xiě)明詳細(xì)過(guò)程,謝謝!
熱心網(wǎng)友
1.先求出曲線y=2-(x^2/2)與y=(x^3/4)-2的交點(diǎn)為(2,0);2.分別對(duì)曲線y=2-(x^2/2)與y=(x^3/4)-2求一階導(dǎo)數(shù),并把上述交點(diǎn)的x=2代入, 于是得到:k1=-2,k2=3;3.最后,用兩直線夾角公式得:tga=|[3-(-2)]/[1+3*(-2)]|=1,所以,曲線y=2-(x^2/2)與y=(x^3/4)-2在交點(diǎn)處的夾角為45度.
熱心網(wǎng)友
1.解方程組:y=2-(x^2/2) y=(x^3/4)-2求出曲線y=2-(x^2/2)與y=(x^3/4)-2的交點(diǎn)為(2,0);2.分別對(duì)曲線y=2-(x^2/2)與y=(x^3/4)-2求一階導(dǎo)數(shù),并把上述交點(diǎn)的x=2代入, 于是得到過(guò)交點(diǎn)兩曲線的切線的斜率:k1=-2,k2=33.最后,用兩直線夾角公式得:tga=|[3-(-2)]/[1+3(-2)]|=1,所以,曲線y=2-(x^2/2)與y=(x^3/4)-2在交點(diǎn)處的夾角為45度.