周長相同的正方形和圓,哪個面積更大?A。正方形 B。圓 C。一樣大 D。不可比
熱心網友
想想你家的桶和盆,為什么都是圓的,不就知道了么
熱心網友
肯定是圓啦
熱心網友
當然是圓的面積大
熱心網友
b
熱心網友
當然是圓的面積大。
熱心網友
太簡單,圓的面積大。
熱心網友
解:設圓的半徑為r,正方形的邊長為a則有圓的周長為:s1=2*PI*r PI為3.1415926正方形的周長為:s2=4a又因為:圓的面積為:PI*(r^2)=PI*r*r=s1*r/2正方形的面積為:a*a由此可得:答案應該為B
熱心網友
設正方形邊長a,圓半徑r4a=2pi×ra=0.5pi*ra*a,結論是B
熱心網友
圓的面積大,而且,球形的體積在同等條件下也是最大的
熱心網友
周長為C,則正方形面積=C^2/16 圓面積=PAI(C/2PAI)^2=C^24PAI<16,所以圓面積大于正方形.選B
熱心網友
圓的面積大,而且,球形的體積在同等條件下也是最大的
熱心網友
是人都知道圓的面積大
熱心網友
B,