足球隊在訓練中,一隊員在距球門12米處跳射,正好射中2.4米高的球門橫梁,若足球運行的路線是拋物線有y=ax2+bx+c,則A:a<-1/60B:-1/60<a<0C:a-b+c>o 正確的是

熱心網友

足球隊在訓練中,一隊員在距球門12米處跳射,正好射中2.4米高的球門橫梁,若足球運行的路線是拋物線有y=ax2+bx+c,則A:ao 正確的是如果選擇射門處為原點,向球門方向為x軸正方向,則C是錯誤的;如果球是經過拋物線頂點以后射中球門橫梁,應該選擇A;如果球是沒有到達拋物線頂點之前就射中球門橫梁,應該選擇B。

熱心網友

足球隊在訓練中,一隊員在距球門12米處跳射,正好射中2.4米高的球門橫梁,若足球運行的路線是拋物線有y=ax2+bx+c,則A:ao 建立適當的坐標系,出現點(0,2.4) 和 (12,0)先求出拋物線的解析式為:Y=aX^2 - (12a+1/5)X +2.4因為是挑射,所以足球運動的最高點在球門之前所以對稱軸X=-b/2a 0即 :[12a + 1/5 ]/2a 0因為 拋物線開口向下,a <0所以12a +1/5 <0 ,即 a<-1/60 ,選 A