假設(shè) [√(a-x)] + [√(b-x)] = [√(c-x)]請(qǐng)證明 (a+b+c+3x)(a+b+c-x) = 4(bc+ca+ab)幫忙小弟吧!
熱心網(wǎng)友
[√(a-x)] + [√(b-x)] = [√(c-x)]兩邊平方a-x+b-x+2√(a-x)(b-x)=c-x2√(a-x)(b-x)=x+c-a-b再平方得4(a-x)(b-x)=x^2+2x(c-a-b)+(c-a-b)^24ab-4(a+b)x+4x^2=x^2+2(c-a-b)x+a^2+b^2+c^2-2ac-2bc+2ab3x^2-2(a+b+c)x=(a+b+c)^2-4(bc+ca+ab)3x^2-2(a+b+c)x-(a+b+c)^2=4(bc+ca+ab)左邊分解因式得(a+b+c+3x)(a+b+c-x)=4(bc+ca+ab)得證。
熱心網(wǎng)友
把[√(a-x)] + [√(b-x)] = [√(c-x)]兩邊平方,移項(xiàng),再平方,因式分解,得證 (a+b+c+3x)(a+b+c-x) = 4(bc+ca+ab)