求使下列函數(shù)取得最大值、最小值的自變量x的集合,并分別寫出最大值、最小值是什么?(1)、y=-5sinx, x∈R(2) y=1-1/2cosx x∈R(3) y=3sin(2x+π/3) x∈R(4) y=1/2sin(1/2x+1/4π) x∈R請(qǐng)說(shuō)明為什么是這樣解,謝謝!

熱心網(wǎng)友

解:考慮到 -1≤sinx≤1, -1≤cosx≤1, 先求出x的初角,再加上2kπ就是集合。(1)y=-5sinx, x∈R當(dāng)sinx=1,即x=π/2, 集合{x∣x=2kπ+π/2,k∈Z}時(shí), ymax=5,當(dāng)sinx=-1,即x=3π/2,集合{x∣x=(2k+1)π+π/2,k∈Z}時(shí), ymin=-5(2)y=1-(1/2)cosx, x∈R當(dāng)cosx=-1,即x=π, 集合{x∣x=(2k+1)π,k∈Z}, ymax=3/2,當(dāng)cosx=1,即x=0, 集合{x∣x=2kπ,k∈Z}, ymin=1/2,(3)y=3sin(2x+π/3), x∈R當(dāng)sin(2x+π/3)=1,即2x+π/3=π/2,集合2x+π/3=2kπ+π /2,即 集合{x∣x=kπ+π/12,k∈Z}, ymax=3,當(dāng)sin(2x+π/3)=-1,即2x+π/3=-π/2,集合2x+π/3=2kπ-π /2,即 即{x∣x=kπ -5π/12,k∈Z}, ymin=-3(4)y=(1/2)sin[(1/2)x+π/4], x∈R當(dāng)sin[(1/2)x+π/4]=1, 即(1/2)x+π/4=π/2,集合(1/2)x+π/4=2kπ+π/2, 即集合{x∣x=2kπ+π/2,k∈Z}, ymax=1/2,當(dāng)sin[(1/2)x+π/4]=-1, 即(1/2)x+π/4=-π/2 集合(1/2)x+π/4=2kπ-π/2, 即集合{x∣x=(2k+1)π-π/2,k∈Z}, ymin=-1/2,。

熱心網(wǎng)友

1)y=-5sinx-1=-5=x=2kPi-Pi/2:ymax=5;x=2kPi+Pi/2:ymin=-5.(k是整數(shù)。以下同)2)y=1-1/2*sinx-1/2=1/2=x=2kPi-Pi/2:y(max)=3/2;x=2kPi+Pi/2:y(min)=1/2.3)y=3sin(2x+Pi/3)3x+Pi/3=2kPi+Pi/2---x=(2kPi)/3+Pi/6:y(max)=3;3x+Pi/3=2kPi-Pi/2---x=(2kPi/3-5Pi/6:y(min)=-3.4)y=1/2*sin(x/2+Pi/4)x/2+Pi/4=2kPi+Pi/2---x=4kPi+2Pi:y(max)=1/2;x/2+Pi/4=2kPi-Pi/2---x=4kPi-2Pi:y(min)=-1/2.