熱心網(wǎng)友
1)0=x^2-xy-2y^2 +mx+ 2y=[x+m(1-y)][x-(1+m)y]+y(1-y)[2-(m+1)m],(0,0),(0,1),(-m,0)在0=x^2-xy-2y^2 +mx+ 2y上,2)過(0,0),(0,1)的直線為:x=0,不在0=x^2-xy-2y^2 +mx+ 2y上。同理過(0,0),(-m,0)的直線為:y=0,不在0=x^2-xy-2y^2 +mx+ 2y上。3)所以過(-m,0),(0,1)的直線為:x+m(1-y)=0,在0=x^2-xy-2y^2 +mx+ 2y上。4)若方程x^2-xy-2y^2+ mx+ 2y=0表示兩條相交直線,取(x,y)在直線:x+m(1-y)=0上,則0=x^2-xy-2y^2 +mx+ 2y=[x+m(1-y)][x-(1+m)y]+y(1-y)[2-(m+1)m]==y(1-y)[2-(m+1)m]則2-(m+1)m=0,m=1,-2。則這兩條直線方程是:x+1-y=0,x-2y。或x-2+2y=0,x+y=0。
熱心網(wǎng)友
把原題弄清楚