如圖,⊙O的半徑OD,OE分別垂直于弦AB和AC,連結DE交AB,AC于F,G。求證:⑴AF^2=AB^2(已證出)⑵AG^2=DF·GE
熱心網友
解: ∵OD⊥AB OE⊥AC ∴AD⌒=DB⌒ AE⌒=EC⌒ (AB⌒表示AB劣弧) ∴∠AFG=1/2×(DB⌒+AE⌒) ∠AGF=1/2×(AD⌒+EC⌒) ∴∠AFG∠AGF ∴AG=AF連AD,AE ∠DAF= 1/2×(DB⌒) ∠AEG= 1/2×(AD⌒) ∴∠DAF=∠AEG ∠ADF= 1/2×(AE⌒) ∠EAG= 1/2×(EC⌒) ∴∠ADF=∠EAC ∴△ADF∽△AEG ∴AF/GE=DF/AG AG×AF=DF×GE既AG^2=DF·GE