數(shù)學題目-------------------------判斷三角形的形狀三角形ABC中,已知(a+b+c)(a+b-c)=3ab;sinAsinB=3/4,試判斷三角形的形狀

熱心網(wǎng)友

由前條件,變形后利用余弦定理,可得角c=60度,后面的利用積化和差可推出A=B,故為正三角形,對吧!

熱心網(wǎng)友

(a+b+c)(a+b-c)=(a+b)^2-c^2=a^2+b^2+2ab-c^2=2abcosC+2ab=2ab(cosC+1)∵(a+b+c)(a+b-c)=3ab∴3ab=2ab(cosC+1) ∵ab≠0∴cosC=1/2 即C=π/3------------------------sinAsinB=(-1/2)[cos(A+B)-cos(A-B)]=(-1/2)[cos(π-C)-cos(A-B)]=(1/2)[cos(π/3)+cos(A-B)]=(1/2)[(1/2)+cos(A-B)]=(1/4)+{[cos(A-B)]/2}∵sinAsinB=3/4∴3/4=(1/4)+{[cos(A-B)]/2}∴cos(A-B)=1 即在ΔABC中A=B∵A+B=π-(π/3)=2π/3∴A=B=π/3∴A=B=C=π/3(即為等邊三角形) 。

熱心網(wǎng)友

(a+b+c)(a+b-c)=(a+b)^2-c^2=a^2+b^2+2ab-c^2=2abcosC+2ab=2ab(cosC+1)∵(a+b+c)(a+b-c)=3ab∴3ab=2ab(cosC+1) ∵ab≠0∴cosC=1/2 即C=π/3------------------------sinAsinB=(-1/2)[cos(A+B)-cos(A-B)]=(-1/2)[cos(π-C)-cos(A-B)]=(1/2)[cos(π/3)+cos(A-B)]=(1/2)[(1/2)+cos(A-B)]=(1/4)+{[cos(A-B)]/2}∵sinAsinB=3/4∴3/4=(1/4)+{[cos(A-B)]/2}∴cos(A-B)=1 即在ΔABC中A=B∵A+B=π-(π/3)=2π/3∴A=B=π/3∴A=B=C=π/3(即為等邊三角形)。