兩道:1~ 某人在一星球上以速度vo豎直上拋一物體,經時間t后,物體落回手中,已知星球半徑為R,那么要使物體不再落回星球表面,物體拋出時的速度至少為()A.(vot)/R B.根號下(2voR/t) c.根號下(vot/R) D.根號下(vo/tR)2~ 地球的半徑為R0,地表的重力加速度為g0,地球的自轉角速度為w.求在赤道上空運行的同步衛(wèi)星的速度。(這是暑假作業(yè)上的題目,應該很簡單的~~詳細答案,有思路更好!謝謝)
熱心網友
1. a=2V0/t,a=V^2/R ,2V0/t=V^2/R ,V^2=2RV0/t,V=(2RV0/t)^0.5選擇B.2. g0=F0/m=GM/R^2 a=F/m=GM/r^2=(R/r)^2 *g0 ,a=wr,wr=(R/r)^2 *g0 ,r=(R^2g0/w^2)^1/3 V=wr=w*(R^2g0/w^2)^1/3=(wR^2g0)^1/3.
熱心網友
1.B因為 V0=g'(t/2)V=更號下(Rg')所以就是B拉