設二次型f(x1,x2,x3)=x1^2 2*x1*x2 2*x2*x3,則f的正慣性指數為設二次型f(x1,x2,x3)=x1^2+2*x1*x2+2*x2*x3,則f的正慣性指數為?
熱心網友
上面的解法是可以的,但需要技巧,并不很容易湊。下面解法是否方便些?寫出這個二次型的矩陣A:第一行:1,1,0;第二行:1,0,1;第三行:0,1,0。求出行列式|A|=-1,從而有A的三個特征值乘積=-1由于A的一階主子式10,所以A不是負定的,即A的特征值中至少有一個不是負數。因為A的三個特征值乘積是負數,所以A的特征值中應該有兩個是正數,即f的正慣性指數為2.按這種解法,不需要技巧,只需要概念。
熱心網友
f(x1,x2,x3)=x1^2+2*x1*x2+2*x2*x3==(x1+x2)^2+(x3)^2-(x2-x3)^2==f的正慣性指數為2.